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Nonequilibrium phase transition for a heavy patrticle in a granular fluid
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It is shown that the homogeneous cooling std€S) for a heavy impurity particle in a granular fluid
supports two distinct phases. The order paramggeis the mean square velocity of the impurity particle
relative to that of a fluid particle, and the control paraméteis the fluid cooling rate relative to the impurity
collision rate. Forg* <1 there is a “normal” phase for whicES scales as the fluid/impurity mass ratio, just
as for a system with elastic collisions. F§f>1 an “ordered” phase occurs in WhicES is finite even for
vanishingly small mass ratio, representing an extreme violation of energy equipartition. The phenomenon can
be described in terms of a Landau-like free energy for a second order phase transition. The dynamics leading
to the HCS is studied in detail using an asymptotic analysis of the Enskog-Lorentz kinetic equation near each
phase and the critical domain. Critical slowing is observed with a divergent relaxation time at the critical point.
The stationary velocity distributions are determined in each case, showing a crossover from Maxwellian in the
normal phase to an exponential quartic function of the velocity that is sharply peaked about the ld_qrfzero
the ordered phase. It is shown that the diffusion coefficient in the normal phase diverges at the critical point
and remains so in the ordered phase. This is interpreted as a transition from diffusive to ballistic dynamics
between the normal and ordered phases.

DOI: 10.1103/PhysReVvE.64.051305 PACS nunerd5.70.Mg, 05.20.Dd, 05.40.Jc

[. INTRODUCTION of massm has been studied for the limiting case mfm
<1 [3]. The description was based on the Enskog-Lorentz
A mixture of two mechanically different fluids rapidly kinetic equation for the impurity in a dense fluid and the fluid
approaches a common equilibrium state for times larger thawas taken to be in its homogeneous cooling state. As for the
a mean free time. This equilibrium state is characterized by @ase of elastic collisions, the kinetic equation reduces to a
common temperature or, equivalently, mean square velocsimple Fokker-Planck equation in this limit with a velocity
ties for each type of particle that differ by their mass ratioindependent friction coefficient. The solution to this equation
according to the equipartition of energies. Recently, the corapproaches a HCS for the impurity particle. As expected, the
responding state for a granular mixture was studied using Rinetic temperatures of the two types of parti¢tefined in
two-component system of hard spheres with inelastic colliterms of their mean square velocitiesre always different
sions[1]. Instead of the equilibrium state, the granular mix- although their cooling rates are the same. The ratio of impu-
ture attains a homogeneous cooling st&€S) in which all  rity to fluid thermal velocities is not simplyn/m, as for
time dependence occurs through a scaling of the particle veequipartition of energy, but has a more complex mass depen-
locities by their root mean square velocities. Although bothdence, according to the mechanical properties of both par-
components have a common cooling rate due to the inelastiicles and the degree of inelasticity in collisions. Neverthe-
collisions in the HCS, their granular temperatures are differless, the analysis requires that this mass dependence be such
ent. In terms of their mean square velocities, this implies ghat the ratio of thermal velocities should vanish fafm,
violation of the classical equipartition theorem. The extent of— 0 just as it would for equipartition. A single parameger,
the violation depends on the mechanical differences of théhe ratio of the cooling rate to the impurity-fluid particle
particies(e_g_, mass, diameter, coefficient of restituiimnd collision rate, characterizes the domain for which the thermal
is greatest when the differences are large. The quantitativéelocity ratio vanishes,&*<1. The predictions of the
predictions of the two temperatures from an Enskog-LorentZ0kker-Planck equation in this domaivelocity distribution,
kinetic theory have been confirmed by Monte Carlo simulaiemperature ratio, mean square displacement, diffusion coef-
tions [2]. ficient) have been confirmed by both Monte Carlo and mo-
This effect also occurs for the simplest mixture of an im-lecular dynamics simulatiop#]. As §* — 1 the diffusion co-
purity particie in a One-component fluid. The impurity efficient calculated from this Fokker-Planck equation
“equilibrates” to a common HCS with different tempera- diverges.
tures for the impurity and fluid particles. The dynamics of an The objective here is to put the analysis of Ri] in

impurity particle of massn, in a granular fluid with particles ~ context by extending the discussion&b=1. A preliminary
report of this work has been given in RES]. It is found that

there is a qualitative change in the state of the system at
*Permanent address: Departamento dic) Universidad de Ex- &~ =1 that is analogous to a second order phase transition.
tremadura, E-06071 Badajoz, Spain. Email addressThe order parameteb,is the ratio of thermal velocities with
andres@unex.es a conjugate fieldh proportional to the mass ratio. The param-
TEmail address: dufty@phys.ufl.edu eter & is the analog of the inverse temperature. The termi-
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nology “ordered” is used in analogy with magnetic systems A. Nonlinear friction coefficient

where the ordered phase has a nonzero order parameterthe nrimary property of interest is the ratio of the mean
(magnetization at Z€ro external f|e|<_j. More precisely, the square velocities for the impurity and fluid particles,
ordered phase here is associated with a broken symmetry or
scalinghh=\ ¢s which applies foré* <1 but does not hold — (v%(t))
for £ =1. For £&* <1 the fluid is “normal” with ¢s=0 at P(t)= <v2(t)>'
h=0, as in the case of a system with elastic collisions. For
£ >1 an “ordered” state Withgsgﬁo occurs ah=0, rep- where the angular brackets denote an average over the initial
resenting an extreme breakdown of equipartition. Criticaistate of the fluid plus impurity particle. This function mea-
slowing and qualitative changes in the velocity distributionSures the accommodation of the impurity particle to the fluid
function for the impurity particle occur near the transition. 2nd will be referred to in the following as the order param-
The diffusion coefficient diverges fa* =1 and can be un- €ter. The coolipg rates associated with the mean square ve-
derstood as a transition from diffusive to ballistic motion. l0cities are defined by

In the next section three characteristic frequencies are in-
troduced: the cooling rate for the fluid particlqes, the cooling £ ==aIn(wi(D), &O=-aln@).
rate for th? impu_rity, an_d the impurity-flu_id collision rate'_A_For dimensionless units it is useful to define an average
smple estimate is obtained using a maximum en_tropy d'smimpurity—fluid particle collision rate
bution to construct a phenomenological overview of the
HCS, its properties fom/my<<1 (or equivalentiyh<1), and 8 — 1+ag m
the phase transition analogy. In Sec. lll the diffusion coeffi- ve(t)= §hp770290<v(t)>, h=——
cient is calculated from its Green-Kubo representation using 0
the leading term in a cumulant_expansion c.)f.the ,V6|0Citywhere;=((r+0'0)/2 is the average diametes,is the fluid
autocorrelation functiofi6]. The diffusion co_eff|C|ent is ex- density, g, is the pair correlation function for the impurity
pressed as a function of the order paramefgig™ ,h), and  particle and a fluid particle at contact, afe(t)) is the av-
for §* <1 the results of3] are recovered. Otherwise, at the erage speed of a fluid particle in the HCS. The paranteter
critical point and in the ordered phase, it is divergent. Thishas been introduced as a measure of the mass ratio. As a
divergence is interpreted by reconsideration of the Greenfunction ofh this form for the collision frequency is the same
Kubo expression for finite times, showing a crossover fromas that for elastic collisions characterizing the equilibration

diffusive behavior in the normal phase to ballistic motion in rate. A dimensionless equation fa(t) now can be written
the ordered phase. in the form

A more complete description is given in Sec. IV based on
an exact asymptotic analysis of the Enskog-Lorentz kinetic 9 E:( & — g*)g ()
equation for the impurity particle velocity distribution func- s 0r
tion. This distribution function is calculated in the critical where the dimensionless cooling rates and dimensionless
domain, showing a crossover from Maxwellian #7<1 to  time have been introduced as
an exponential quartic function of the velocity centered
about a nonzero value faf*>1. The functional form of . 3 é*_fo
¢4(h,&*) and associated critical properties are similar to v, 0
those obtained in the phenomenological overview, with no o
qualitative differences. These results are summarized and T0 Proceed itis necessary to calculgteand¢g as func-
discussed in the last section. tions of ¢. As shown in Appendix A, these are related to
averages over the pair distribution function for two fluid par-
ticles and for a fluid and the impurity particle, respectively.
This is a formal result since the distribution functions are not

Consider a fluid of hard, smooth, inelastic spheres of masknown. As a phenomenological estimate therefore, these av-
m, diameterc, and fluid-fluid particle coefficient of normal €rages are performed using a maximum entropy ensemble
restitution . In all of the following it is assumed that the Parametrized by the true mean square velocities. The quali-
fluid is in its HCS. Due to the inelastic collisions among tative accuracy of this approximation is confirmed in Sec.
particles the mean kinetic energy decreases as a function &f- The results of Appendix A are
time (referred to as “cooling’j. An impurity particle of mass 5 2
my, diameteroy, and impurity-fluid particle coefficient of L 1-a”g (o % T — 12 1+¢

" 0 : ) S F=—xrn——|=|, &(P)=(1+¢)"| 1-h—/],

restitution «q is inserted in the fluid at some initial time. 4\2h %\ o ®
There is energy transfer between the impurity and fluid par- (6)
ticles due to collisions and subsequently a common HCS for
the fluid and impurity is attained where all particles have thewhereg is the pair correlation function for two fluid particles
same cooling rate. In this section a phenomenological buat contact. This form for the cooling ragg of the impurity
accurate description of this process and the HCS is given ts the same as that for elastic collisions and represents the
present the basic ideas in a simple physical context. equilibration rate. The new features of inelasticity are prima-

@
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ds=v(t)dt. )
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II. PHENOMENOLOGICAL OVERVIEW
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FIG. 1. Ratio of mean square velociti% as a function of the

mass ratio parametérfor ££=0.9, 1, and 1.1. FIG. 2. Plot of &(¢), Eq. (6), for h=10"2 (dotted ling, h
=103 (dashed ling andh=0 (solid line). The intercepts of the

curves with the horizontal lineg* =0.9, 1, and 1.1 give the corre-

. . * . . . e _ gl
rily desc:ﬂbed byé*, which is independent of. The equa sponding values of(&* h) (circles.

tion for ¢(s) with these approximate forms for the cooling

rates is
h for £*=0.9,1.0, and _1.1. An instructive alternative form
[+ v* () — £*1p=hn(g), (7)  for the determination ot is
which results from the decompositiorﬂ;(g)=;*($) .
—hn* (4)/ with the definitions & =5 (9. (10
k(N — N2 o — 3/2
V() =(1+H)7 n(¢)=(1+¢)"" (8) The graphical solution to Eq10) is obtained in the plang

This has the same form as would be obtained from a simpl¥S ¢ by finding the value of¢ at which the constany

Langevin or Brownian motion model Whe@‘ (a) is the =& in_tercepts the CUW:%(@’)’ as illustrated in Fig. 2.

“friction constant” or nonlinear impurity-fluid collision fre- 1"€re is seen to be a qualitative difference between the so-
lutions for &* <1 and§*>1 in the limit of smallh. Since

guency anchn(d;) is the noise amplitude. The solution to —

this equation is a function of time and the two parametérs 7 *(¢)=7*(0)=1 andn(0)=1 the asymptotic solution for

. . — . &<lis
and h. The stationary solutionghy(¢*,h) are determined
from

_ _ n(0 h
T (g 7
This form shows most clearly the effect of competition be-

tween “friction” on the impurity particle and fluid coolin . . . —
s . .p y P . - . g tions with £&*>1 is now clear. Asé* exceedsy*(0) the
since v* (¢pg) > £* is required for positive, finite solutions. —

This generalizes the result obtained in RES], which is nonlinear dependence of the friction coefficient qbn's ac-
limited to &* <1 andh—0. It is easily verified that a unique tivated to maintain positivity ofy* (¢ —£*. Since y*(¢)
positive solution to Eq(9) exists for all positives* andh  is a monotonically increasing function gf, positivity is pos-
and that it is linearly stable. This confirms that the HCSsjple for any choice of*. In general this requires tha;b

characterized by is approached for long times for a wide must be finite even foh—0. This is possible ify* (¢9
class of initial conditions. The time scale for formation of the —&* is of orderh for small h or ¢ = const O(h). This
S

HCS is discussed below. For elastic collisions=(ap=1)
the solution isps=h/(1—h)=m/my as required by equipar-

which agrees with3]. The mechanism responsible for solu-

nonlinear dependence of the friction coefficient EQ pro-
" . . . . - ! vides the mechanism whereby the coupling of the impurity
tition. If only th‘i impurity-fluid particle collisions are inelas- - icje 1o the fluid can be enhanced for large cooling rates:
tic (ie.,a=1, §* =0) arecent result of Martin and Piasecki e jmpurity-fluid collision frequency is increased by an in-
is recovered [7], #s=h/(1—h)=m(1+ag)/[2my+m(1  creased mean square velocity of the impurity relative to that
—ag)]. of the fluid. This is illustrated in Figs. 1 and 2 showing the
More generally, Eq(9) can be transformed into a cubic qualitative difference betweeit <1 andé*>1. The former
equation forgs whose physical solution givesy(£*,h) for  admits ¢<—0 for h—0 whereas the latter requiresés
arbitrary£* andh. Figure 1 shows;&s(g* h) as a function of =const. In more detail, the asymptotic solution to E9).is
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FIG. 3. Ratio of mean square velocitigg and of mean kinetic
energiesey/ € as functions of the mass ratio paraméidor a=1,
0.95, and 0.99.

(1=¢)7h, £ <1,
Bo€* )1 \2h, =1,
21428 -1 h, &>

(12

The common domain ofi—0 and §*_—>1 can be obtained
from Eq. (9) by the scalingh— e?h, ¢s— e, and 1—&*
—€(1— &%), for e<1. The result is the quadratic form

— 1,
h“(l_g*)¢s+§¢sv (13)
which has the solution
=& —1+(&-1)%+2h. (14

At h=0 this gives¢gs~&* —1+|&* —1], illustrating again
the qualitative difference betweefi <1 and&* > 1.

Figures 1 and 2 show that the fluid cooling rate relative to
the impurity-fluid collision rate* is a control parameter

distinguishing different dependencies$§ on h for smallh.
This will be exploited in the next subsection, whefe=1
identifies a critical point. Sincé* «(1— a?)/h, Eq. (6), the

plots of$S at constant* require the change of both the fluid

coefficient of restitutionr and the mass ratio parameterit

PHYSICAL REVIEW B4 051305

a=1 represent equipartition for WhiCES—)h/(l—h) and
egle—1. Fora<1 there is a sharp deviation at sufficiently
small h, representing the crossover to the domain for which
&>1.

B. Representation as a phase transition

Figure 1 and Eqgs(12) and (14) are reminiscent of the
thermodynamics for magnetization as a function of an exter-
nal magnetic field. Below some critical temperature the mag-
netization is finite at zero field, while above that temperature
it vanishes at zero field. To pursue this analogy, consider

gs(g*,h) as the order parametémagnetization h as the
conjugate fieldmagnetic field, and&* as the control param-
eter (inverse temperatuye The “equation of state” for the

system is obtained from Eq9) by solving forh(eg,&*):

s

L (199

h( s, %)= (15)

A Helmholtz free energy can be defined in the usual way as

F( s &)= O¢deh<x,§*>=$s—ln(1+$s>

—2¢& (16)

Next, the Gibbs free energy is obtained from the Legendre
transformation:

(&5 ,h)=F(¢s,&*)—hpd £*,h)
=(1—h)pd & ,h)—In[1+ S £*,h)]
2+ g £*,h)
— 28—
¢ [[1+¢s(§*,h>]1’2 }

The first and second derivatives @f( £ ,h) provide the or-

der parametegs, “entropy” 3, “susceptibility” y, “ex-
pansion coefficient’ay,, and “heat capacity”C,,. The re-
sults are

17

24
(1+ 9™

D(&*,h
2(§*’h):M:_2
aE*

2], (18)

PD(E*,h) g £ ,h)
oh? B dh

x(§*,h)=—

(1+ 9

is instructive, however, to examine the mean square velocity = (19

ratio ¢ and the mean energy ratiey/e=(mgy/m) g as
functions ofh at fixeda<1. In that caseé* ~h ™! diverges
in the limit h—0 and so dope~£*2(1+h)2—1~h"2 and
€o/e~h~3. This is illustrated in Fig. 3, wheres and e,/ e
are plotted versu$ for =1, 0.99, and 0.95taking, for
simplicity, ag=1, o=03, g=09=1). The dotted lines for

<1+$s>1’2—§*(1—%$s>

FPRE D) _ag(Er ) b
9&* oh ot (1t 9P
(20

ap(€*,h)=—
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FIG. 4. Entropy as a function af* for h=10"? (dotted line, )
h=10"3 (dashed ling andh=0 (solid line). I
ah
PD(EFh) 1}
Crlgm == — 5 =x tag. (21)
. L - 0=
The values of these thermodynamic properties in the limit
h=0 for_g* #1 follow directly from the asymptotic forms 1ol
(12) for ¢s:
i) §*<11
d(EF,h=0)= C
=07 (o) -2me, o1 03
(22)
*
0, & <1, 0.%5
* h— — * 1 2 g
Meh=0=) -1 @Y ;
g*
FIG. 5. Inverse susceptibilityy( 1), expansion coefficient,),
1, & <1, and heat capacityd;,) as functions of* for h=10"2 (dotted ling,
h=10"2 (dashed ling andh=0 (solid line).
X(EN=0= 26 g @8 ( * ( !
& +1 response functiong, «y,, andC,, ath=0, 10 2, and 103
are shown as functions @* in Fig. 5.
 he0)— 0, & <1, Near the critical regioni{<1, |&* —1|<1), the free en-
an(¢",h=0)= 28% £ >1, (29 ergy adopts the Landau-like form
0, &<, 1 1 _
" O(E N~ 5 (1= g+ ghi-hds,  (27)
Ch(§*,h=0)=§ &°-1 (26)
2 — & >1.

which yields the critical equation of stat#3), as expected. It

With the exception of, all thermodynamic variables vanish iS easily verified that the free energy and the equation of state
for ¢*<1 and are finite for*>1. All are continuous at N the critical region satisfy the scaling relations

&* =1, except fora;,, which has a finite discontinuity. The
susceptibility diverges ag* —1|—0. Thus either the dis- DN —1),A\2h)=A\D (&5 —1h),
continuity of «, or the divergence of characterizes a sec-
ond order phase transition & =1. Since the order param-
eter ¢ behaves qualitatively like that for a system with
elastic collisions wheg* <1, this will be referred to as the . . .

“normal” phase. In contrast, smc$3¢0 for £ >1 this will with a=2 andb= 3. These scaling relations suffice to deter-
be called the “ordered” phase. The entropy function Mine the critical exponent8] d=a/(b—a)=2, B=b-a
S(€*,h) is plotted versug* for h=10"2, 10 %, and 0 in =1, and y=2a—b=1, while the critical exponentr=2
Fig. 4. The negative value af at h=0 and §*>1 is a —b=-1is negative, indicating tha,, is continuous at the
measure of the degree of “order” in the ordered phase. Theritical point.

BN (£ —1),\%h)=\P"2gp (& —1h) (28)
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FIG. 6. Variational free energp (&*,h=0;¢) for £=0.9, 1, FIG. 7. Inverse characteristic time* ~! as a function of the
and 1.1. mass ratio parametdrfor £*=0.9, 1, and 1.1.

C. Critical dynamics diverges at&* =1. This critical slowing follows directly

from the fact that7* «y. Otherwise, the relaxation times
away fromé&* =1 are finite and comparable for the normal
and ordered states. Figure 7 shows the dependenc® df
onhfor é&=0.9, 1, and 1.1.

If the ratio between the initial mean square velocities of
the fluid and impurity particles is not that given by the solu-
tion to Eq.(9), there is an evolution to the HCS described by
Eq. (7) which can be written in the Ginzburg-Landau form

L aD(Eh; ¢) lll. DIFFUSION

dsp= _ 29
«f=—n(#) 3¢ @9 Diffusion of an impurity particle in the HCS has been

. described in general elsewhd®9,10. In this section the
Here, ®(&*,h; ¢) is avariational free energy given by Eq. consequences fdi—0 in the two phases are explored. A
(17) with the order parametep considered as an indepen- generalized diffusion equation can be obtained by extending
dent variable, and the kinetic coefficientn?g). The sta- the familiar methods of linear response to the granular fluid,

) . - o which for long wavelengths takes the form
tionary solution occurs foe®(&*,h;¢)/dp=0, which is
just Eq.(9). It follows directly from Eqs.(17) and(29) that an* (r*,s)—D*(s)V2n*(r*,s)=0. (32
O (&% ,h; ¢) has the properties
Here n*(r*,s) is the dimensionless probability density to
D(&* i) =D (£ h; by find the impurity particle at positiorr=r*/, where /
i s 22 i i
(30) =(vg)s 1vc is an effective mean free path, asds the di-
mensionless time of Eq5). The time dependent diffusion
=0. functionD* (s) is given exactly by a Green-Kubo expression

oD (&* h
9D (£* i) =—n() s )|’

d¢

This shows thatb (&* ,h; ¢) is a Lyapunov function for the D*(s)= ——3
dynamics: it is bounded from below by the HCS solution and 3(vo)sl0

monotonically approaches this bound. Consequently, the
HCS solution results in both phases for a wide class of ho"WNere Vg =Vo/V(v*)s and the angular brackets denote an
mogeneous initial conditions and is stable. average over the dimensionless HCS ensemble. A phenom-

The free energyb(§*,h=0;$) is shown in Fig. 6 for enological but accurate evaluation of the velocity autocorre-

£=0.9, 1, and 1.1. As expected, the minimum is located alatlon function is given by its exact short time behavior
¢=0 for &¥<1 gnd at¢¢p for &¥>1. For stat_es near the (vg(s’).VZ)‘)SH(ng)Se““BS', (34)
HCS the evolution equatio29) can be linearized and a
characteristic response tim& identified according to

J ds'(VE(s')-VE)s, (33

1, (L*Vg)Vg)s
_ _ T 35
—dsIn[¢p— =" "T=(nx Y3 (31) N AL %9

In the elastic limitr* is just the equilibration timéin terms ~ WhereL* is the dimensionless Liouville operat@f. Appen-

of the number of impurity-fluid particle collisiondor the  dix A). The dimensionless frequenayy, is calculated in
impurity particle to attain a mean kinetic energy equal to tha'Appendix A using the same approximation as that for the
of the fluid particles. Similarly, for inelastic collisions it is cooling rates in Sec. Il, with the result

the time for the impurity particle to reach a cooling rate
equal to that of the fluid. This characteristic time is a smooth
function of h and &* except in the limith—0 where 7*

wh=3 17 (B9~ &5 (36
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For a fluid with elastic collisions the approximati@®4) co-  This shows that the impurity is not diffusing but rather un-
incides with that obtained from the Enskog-Lorentz equatiordergoing ballistic motion at its root mean square speed if
in the first Sonine approximation, and is known to be accu£*=1.

rate even for moderately dense systems. It is assumed that a

similar level of accuracy extends to the inelastic case as well

[10]. The diffusion functionD* (s) becomes IV. ASYMPTOTIC KINETIC THEORY

The analysis of Secs. Il and Il is based on the plausible
but uncontrolled estimate of the cooling rates for the fluid
and impurity particles using a maximum entropy ensemble
(Appendix A). Furthermore, it is limited to a discussion of
The analysis of Appendix A shows thaf,>0 for all finite the order parameter and diffusion but does not address other
h. Thus fors> wal properties such as the velocity distribution itself. In this sec-

tion the results of Sec. Il are recovered systematically and
with additional detail from the Enskog-Lorentz kinetic equa-
(3g)  tion for the impurity particle velocity distributior1,3,6].
3wph The features of interest here occur for-0 so only an
asymptotic representation of the kinetic theory is required.
and Eq.(32) becomes the usual diffusion equation with dif- The fluid particle distribution is independent bfand its
fusion constantD*. The initial transient period is the ex- detailed form is not required for the analysis here. The
pected “aging” required for applicability of hydrodynamics asymptotic form of the Enskog-Lorentz equation for the im-

1 *
D*(s)=—(1—e “0%). (37

wp

D*(s)—D*=

(diffusion). purity particle distributionfy(vg,t), as a functional of the
Consider now the behavior @s—0. Using Egs(8) and  fluid particle distribution, is the focus of this section.
(9) o} can be expressed entirely in terms@ andh: An expansion of the impurity-fluid particle collision op-
erator in powers ofh is straightforward, leading to the
1 (1+593/2 Kramers-Moyal representatiofill]. The leading terms of
w’5=§hT (390 this expansion have been given in Appendix A of Hél:

bs

ing EqQ.(12) this f h for— J
Using Eq.(12) this frequency behaves for—0 as 3tfo(Vo,t)=a—%'[th(vo)fo(Vo,t)]

¢

1
5(1—5*), & <1, 1 4 he s
) G000, N1(vo) 6ij +Ny(vo)
1\ﬁ -
R EAC (a0 L] fotves| -0t
Voiloj~ 3%jV0 o(Vo,t) 1 +O(h%).
1 5*3 .
(22" &=L (44

In general,w}(£*,0) is finite below the critical point, but The friction ¥(vo) and the noise functions;(vo),nz(vo)

vanishes at and above the critical point for 0. Thus dif- &€ explicit averages over the fluid particle distribution given
fusion in the sense of Eq38) occurs ath=0 only for &* in Appendix B. The states of interest are functions only of
<1. To understand the phenomenon =1 note that for the magnitude of,. Consequently, it is possible to introduce

op=0 Eq.(37) becomes a variable

D*(s)= = (41) v
=3 — 45
3 ¢ 020} (45)

To interpret this, take the second moment of E2R) with

respect torz_to reI_ateD*(_s) to the mean square displace- \ynose average value is the order paramgt(es), wheres is
ment of the impurity particle, the dimensionless time variable defined in E5). The dis-
tribution function for this variable i®(¢,s), defined by

1
D*(s)= gas(|r*(s)—r*(0)|z)s. (42)
P(¢.5)=4mfo(vo,H)vg— =2m(v2(1)) ¥ (v, 1).

(46)

dUo
Thus the mean square displacement behaves as w
6D*s, §&*<1,

IFrE=-rOPsle gz @

Then the Kramers-Moyal expansion becomesR¢t,s)
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FIG. 8. Plot of the friction coefficieny* (¢) (solid line) and the g

. ) . . " ;
noise functions; (¢) (dashed lingandn; (¢) (dotted ling. FIG. 9. Plot of the order parameter in the deterministic limit,

J 5 4 bos, as a function of*. The dashed line is the maximum entropy
0P(,S)=—1 [~ +v*(d)]—| 1— = —d |hn*($)  estimatep=¢*2~1 of Sec. Il.
4 9 with
+§5—¢2hn§(¢)]P(¢,S)+O(h2)- 47 I
¢ [9st7* ($o) = £* 1o(5) =0 (50
Hereg*. is the dimensionle.ss co*oling raie for the ﬂtiid intro- g bo(5=0)=o. Thus the initial sharp distribution re-
duced in Eq(2). The functionsy*(¢), ni(¢), andn3(#)  mains sharp and only its central value changes in time. The
are the_d|r|r1en§|0nle§s ];Eor?;;;gv())’dr(]é%v)())'f arr]‘d'k(vo)a latter defines the macroscopic dynamics for the average
respectively, given by Eq an of the Appen- value go(s). As ex . . b
; ! SR . o(S). pected, it has the for7) with a vanish
dixes[12]. They are functionals of the distribution function ing noise. The solution for more general initial conditions

];(f(’(;)) :flfhn?{ Eg;i;ig;z;i:;daiﬁ ;(o(;;nzaktla: ;3 d?-avefjg; be obtained as a superposition of the specific solution

tion, the derivative y*'(¢)=dy*(¢)/d$ at ¢=0 is The stationary solutions are obtained from E%f) as the

v* ' (0)=(v~(v?)/5(v). These functions can be accurately solution to

estimated by assuming a maximum entropy ensemble for the _ _

fluid f and the results are given by E¢B8)—(B10). Accord- bod — E + ¥ (P9 ]1=0. (51

ing to these estimates; (0)=1 and y*'(O)zS/lO. Figure - _ _ _ _

8 shows the friction coefficient* (¢) and the noise coeffi- The possibilities arebos=0 andy* (¢od = £*. Itis shown in

cientsnj (¢), n}(¢) according to this maximum entropy Appendix B thaty*(0)=1. Therefore, the solutiowys=0

approximation forf. Hereafter, all the plots of quantities de- is stable only ifé* <1. In the cas&™ >1 the unique stable

fined in terms of those coefficients will be made using Egssolution is determined fromy* (o) =&* with a nonzero

(B8)—(B10). . _value ofEOS. Such solutions exist becaugzé(g) is a mono-
The Kramers-Moyal expansion is not well ordered smcetonically increasing function, i.e *(g)z *(6) *'(E)

the small parametdn also multiplies the highesp deriva- —0 din A di ' B .YI'h Y th' %’ h

tive. A proper asymptotic result requires a scaling such thaf, =’ as proved in Appendix b. 1Nese are Ihe o phases

all higher terms in the series are exactly zero in the approg'scussed in_Sec. II, now identified precisely from the

priate limit. The simplest case is tleterministic limitfor Enskog-Lore”ntz kinetic equation. The details of the “equa-
which h=0 in Eq. (47). tion of s.tatg are different for this E)ntrolled a_naIyS|s, but
the qualitative features of states wigh=0 and ¢s#0 for

A Deterministic limit h=0 are recovered exactly, as illustrated in Fig. 9.

If the formal limit h=0 is taken in Eq(47), the equation B. Effects of fluctuations

becomes L . . .
A more complete description including fluctuations is ob-

tained by a transformation of the forr¢=$0(s)+hp77,
where ¢q(S) is the average value @f ath=0 and repre-
. . - sents the fluctuations about this value. The power law of the
where the subindex 0 is used to denote quantities=a®.  scaling for the fluctuations is determined by the requirement
The solution to this equation for sharp initial conditions that the distribution of fluctuation®( »,s,h) =hPP(¢,s,h)

]
dsPo($,8)= £¢[—§* +y*(#)IPo(,s), (48

Po(¢,5=0)=6(¢— o) is —P(7,s), which is independent di. Inverting the result in
. terms of ¢ gives the well-defined asymptotic behavior for
Po(,s)=8(p— po(S)) (49 small h [11]. Here, attention is limited to states near the
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stationary stateb,s so the chosen scaling 6= ¢gs+hP 7. 10l
The distribution function is no longer sharp, as in E4p),

but instead has a width proportionalt8. The choice o is 8t
governed by the requirement that the Kramers-Moyal equa-

tion for the distribution ofn should truncate exactly fan B 6}

=0. The details are given in Appendix B, where the station-
ary solution in the normal phase is found to be

1/2
ps( ¢): i( 3¢ ) e—3¢/2h;5, f* <1, (52)

— — 0 L . s .
hns\ 2hnpgm 00 02 04 06 08 10

¢
FIG. 10. Plot of the functioBB(¢) defined in Eq.(56).

and the width of the distribution is characterized by

— ni(0) 3% 1

= = ) 53 C. Critical domain
e T ahw) 1 9

The above results distinguish the caseshe$0 for &*
- _ _ — <1 and for&>1. A uniform description of the critical
Since ¢s=0 in this phase, the order parameter &  domain for smalh and&* ~1 can be obtained by noting that
=hns. This agrees with the result of Ref3], where the 4 _vanishes at the critical point from both phases, and scal-
distribution is recognized as a Maxwell-Boltzmann distribu-ing the Kramers-Moyal equation according t&* —1
tion for the velocity of the impurity particle, but with a dif- — 125 ang p=h2y. In addition a new time variable is
ferent temperature from that of the fluid. In the present Nogefined byr=h¥2s. Then ath=0 the equation is
tation the impurity temperature identified from this
Maxwellian is

dJ ,
3. P(7,7)= —[ —nty* (0)7°
an
1+ ao—
To=T——7s, (54 1 9
~3 3—2%71 ni(0)|P(n,7). (57
whereT is the granular temperature of the fluid. The phase
transition is seen to occur with a diverging kinetic tempera-. : o L
ture for the impurity particle. If a maximum entropy distri- The stationary distribution function is found to be
bution is assumed for the fluid, then the right side of &)
can be evaluated to gei,=h/(1—£*), which agrees with 1 s \2
the phenomenological theory of Sec. Il, E2). P )= Cnl2 _ _
. - T (1) nex n 7
In the ordered phase a qualitatively different distribution 2B(0) ¥* (0)
is obtained, as expected. It is now Gaussiamifquartic in
velocity) and centered about a nonzero value,

., (58

where B(0)=2n%(0)/3y*'(0)=2.22 is the value atp=0
of the function defined in Eq56). The scaled order param-

e7(¢7$s)2/28($s)h1 =1, (55 eter in this critical domain is then obtained from

1
P(¢)= ——
V2B(pohm

with j du ¥Zexd — (u—22)2/2]
— 0
748)=VB(0) —; , (59
: 1 [2 : 4 : 56 f du u¥%exq — (u—22)?/2]
B(¢)=——|3n1(d)+ z¢n3 ()| 56 0
»ipl3 T 5T
The functionB(¢) is plotted in Fig. 10. The width of the Wwherez= 8/2y*'(0)/B(0). Its explicit expression is
distribution isA ¢=[B(4Jh]*? so that ah—O0 the distri-
@tio& becomes_sharply peaked about the stationary value ¥.(2)
ds= bos, Where g is the stationary order parameter in the i 8)=+B(0 1_2' 60
deterministic limit. At a fixed small value df the (absolute 749) ( )42‘1’2(2) (69
width A ¢ increases, but the relathle width ¢/ g de-
creases, ag* —1 (and, consequentlyp,) increases. where
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B (3+42%)W5(2) + 22°[ K71 2°) + K _ 14(2%) — Kgja( %) —K _34(2°)],  2<0,
V(2= (3+6Z22)W y(2) + 2221 114 Z2) + 1 _74(Z2) + 1 5:4(Z2) + 1 _514(Z2)], z>0, (61)
Ky z%) - K3/4(22), z<0,
Fol2)= { l3a(Z%) +1 _3(Z%) + 1 1y 22 + 1 _1ys(2%), z>0, 62)

1,(z) andK,(2) being the modified Bessel functions of the logical theory of Sec. Il, except that there the scaling func-
first and second kind, respectively. The width of the distri-tion is approximated by 8)— 8+ 8%+ 2, Eq.(14). While

bution A = ‘/,72_;2 in the steady state can be obtained bythis function is not quantitatively correct, especially fér
taking moments in Eq(57) as >0 (cf. Fig. 12, it is qualitatively consistent with the limits

in Eq. (64), the numerical coefficients being replaced oy

i (0)+5n48) —, | ~2.43-2, y*'(0)=0.3—9*'(0)=1/2.
Ango)= O 75(8) | . (63 Let us now go back to the unscaled varialleThe cor-
Y responding distribution in the critical domain is
The asymptotic behaviors o_fs(é) andA n¢(9) are 1 & -1 2
PJ¢)xdp2exg — - 66)
I8t 6——w, A0 28000 | " (0) (
78 —1 1, 6—0, (64)  and the equation of state is
sly* (0),  d—=, _ & -1
P4 £*,h)=h1?y ( ) : (67)
VI 0))s) 7t 6, ) | h
Ang8)—1 Yz 6—0, (65  This result encompasses the normal and ordered phases, as
/B(O), S50, well as the critical point. The normal phase in the critical

domain is defined bh<1—¢* (i.e., 5— —), the ordered
where  \;=2B(0)[['(5/4)/T'(3/4)]?~2.43 and X\, Phaseisrecovered in the case{* —1 (i.e., 6—=), while
=3B(0)/2—\;=0.90. In the limit 5—~—« we have the critical point corresponds t§* =1 (6=0). Thus, the
Ano/me— 213, which is consistent with a Maxwell- 2Symptotic behaviors4) translate into

Boltzmann distribution. In contrastA 7s/7s—0 when & hn¥ (0)/(1—¢&*), & =1,

—oo0, so that the distribution is sharp around the order pa- - .

rameter in that limit. The dependence of the scaled order lim ¢g(£*,h)=1 VA1h, &=1 (69
h—0

parameter;s( o) on the scaled control paramet&iis shown
in Fig. 11, where the width of the distribution is also plotted.

It is worth noting that the scaling relation$=h"?»,  |n the normal phaseps~h<1—¢&*, so that the distribution
& —1=h"25 are successfully captured by the phenomeno{66) becomes

(& —1)/y*'(0), &=L

10 3H(1—&F
Py ) ¢ 2ex] — s £ )] (69)
gl 2hn7 (0)
which agrees with Eq(52). In the ordered phase, however,
o the wid_th of the distribution is much smaller than the average
- value ¢¢=(£*—1)/v*'(0) [which is the solution to&*
=y*(¢9 in the critical regiof, so that the prefactop’’? in
2| Eq. (66) can be replaced byl with the result
Py(p)xe (474972800, (70)
5 As expected, Eq€70) agrees with Eq(55) particularized to

- the critical region. Finally, at the critical point the distribu-
FIG. 11. Plot ofp4d) (solid line) and A 5, (dotted ling. The  tion is

dashed line represents the phenomenological approximatios) ,
—8+/8%+2, Eq.(14). Py ) ¢1/2e—¢ 12B(0)h- (71)
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FIG. 12. Plot of the normalized distribution functidf (x) for
o=(£—1)¥=—w (--), =1 (=--),0(=-), 2(- -), and
5 (—).

As anticipated from the behavior afr;S/;S, there exists

PHYSICAL REVIEW E64 051305

Equation(57) becomes

2 J
dy(n,7)=5n1(0)5— 5(71)77r7 y(n,7). (79

Pdn) in
Now we defineF[y] by

Fyl= | CanPinty(noP 76

Then, from Eq.(75) we have
2

. (77

4 ° P
0F1Y1=~ 51O [ “dnPimin|oyinn

Thus, F[y] has the required properties of a Lyapunov func-
tional for the dynamics of/(7,7), namely[13],

Fly]=0, 9, F[y]=0, (78

a crossover in the critical domain from the Maxwell- the equality being satisfied fgr=0 only. This implies that

Boltzmann distribution(69) to the sharp distributior{70)
through (71). Of course, the distribution functiof66) is

for any initial condition the solution to Ed75) evolves in
time towardy(»,7)—0.

more general than the three limiting cases described by Egs. The dynamics forp(7) is given by

(69—(71). To focus on theshapeof the distribution function
around its average \ value define the normalized distribution

P*(X) ¢s (o= X¢s) NP 7= X775) From Eq.(58) we

have
2

By construction, this distribution is normalized {@)=1,
regardless of the value of the scaled control param®t€he
asymptotic forms oP (x) are

. _
Pg(x)ocxl’zex;{ - §<X s

VB(0)

z=6/2y*'(0)\B(0).

(72

( [3x "
3 Ze 3 2, 0— —°,
. [T(5/41% p{ [r(5/4) 2]
PS(X)—> [I‘(T4)]5/2 eXx 1_,(3/4)X s 5—)0,
2
\/;ZGXF[—ZZZ(X—.'L)Z], S0,
“ (73

The crossover of the normalized distributiBd (x) from the
Maxwell-Boltzmann form corresponding t6— —o0 to the

sharp distribution corresponding &-=5 is illustrated in Fig.

12.

D. Critical dynamics

(9,— &) n+7*'(0) =% (0). (79
This is not a closed equation so in principle it is necessary
first to solve Eq.57) for the distribution function and then
calculaten. However, an estimate can be obtained from Eq.
(79) using the apprOX|matlom; ~(7; /1;5)77 Then the lin-

earized equation fok= 7— 7, obtained from Eq(79) for
smallx is

(0)
775

5+

(80)

Of course, 5+ 2n’l‘(0)/;S>0 for 6=0. It can be verified
from Egs.(61) and(62) that¥,(z)/V¥,(z)= — 3 for z<0, so

that 5+ 2n* (0)/7s=|5| for 5<0. This confirms the above
stability analysis. EquatiofB0) is consistent with Eq(B18)
for the ordered phase and E@23) for the normal phase.

The finite relaxation timep4/2n7 (0) at the critical point is
not in conflict with the divergent relaxation time in E@1)
since the unit of time is differeri.e., 7= \/ﬁs).

V. DISCUSSION

Detailed application of statistical mechanics methods to
the model granular fluid of hard spheres with inelastic colli-
sions exposes important differences from normal fluids. First
among these is the replacement of the equilibrium Gibbs
state with the time dependent homogeneous cooling state. In
the case of mixtures, the absence of detailed balance in col-
lisions leads to a breakdown of the usual equipartition theo-
rem for normal fluids. This is interestifg.g., the HCS for a

To study the dynamics in the critical domain define abinary mixture has two kinetic temperaturdsit is perhaps

deviation from the stationary solution by

P(m,7)=P{n[1+y(n,7)]. (74

not too surprising. In the case of a single, mechanically dif-
ferent, impurity particle in a one-component granular fluid
this effect is easily understood as a competition between the
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average impurity-fluid collision ratev., responsible for relation function this is seen to be a divergent relaxation time
“equilibration,” and the cooling rate for the fluidé, con-  for the decay of correlations, and consequently the mean
stantly changing the reference state. This competition is mosiquare displacement is characterized by ballistic rather than
severe for conditions such that the average impurity-fluigdiffusive dynamics.

collision rate decreases at constantas occurs when the  (5) The HCS velocity distribution in both phases and in
impurity mass is much larger than that of the fluid particle.the critical region is obtained from an exact asymptotic
This requires that a nonlinear dependence of the actu@nalysis of the Enskog-Lorentz equation. In the normal phase

impurity-fluid collision rate on impurity mean square veloc- @Way from the critical point it is a Maxwellian with a tem-
ity is activated to increase the true collision rate. As a conlerature different from that of the fluid. In the ordered phase

sequence, the joint HCS for the fluid and impurity is main- 't i @ quartic function of the velocity centered about a non-

tained but with a much higher speed for the impurity relative?S'0 average speed. _The distribution function in the cr|t|_cal_
. . L P - region exhibits a continuous crossover between these distri
to that for the fluid particles. In the limit of infinite impurity

mass an extreme breakdown of equipartition occurs with thg utions as the .coollng rate changes fr@f‘nsl'to &=1

. . . : - - . The most direct and controlled observation of the phe-
s!nglg impurity particle attaining a finite fraction of the total nomena described here would be via Monte Carlo simulation
kinetic energy. S - of the Boltzmann-Lorentz equation or molecular dynamics

This peculiar feature distinguishes the conditiongbfc  gimylation. The qualitative change in the distribution func-
= ¢&* <1, where the distribution of energies is similar to thattjon for the ordered phase has already been seen in Monte
for a normal fluid, from¢*>1, where the distribution is carlo simulation, Fig. 6 of Ref4]. In principle, the Monte
anomalous. A surprising feature of the description given hergarlo simulation could provide access to the longer time
for these two cases is the exact analogy to a second ordgghavior associated with critical dynamics and diffusion near
phase transition in a normal fluid. The order parameter is thehe critical point. Experimental conditions for real fluids are
ratio of impurity to fluid particle mean square velocities,, more difficult to imagine, since a cooling medium for the
the conjugate field i& (a measure of the mass ratiand the  impurity particle is required. However, as noted above, the
role of the inverse temperature is the relative cooling &te  cooling does not have to be associated with inelastic colli-
To summarize the primary results obtained here the followsions. Thus an impurity particle in a continuously and homo-
ing comments are offered. geneously quenched fluid should exhibit the same phase
(1) The nonlinearity of the impurity-fluid particle colli- transition.

sion rate, expressed by the dimensionless friction constant The extreme breakdown of equipartition discussed in this
v*(¢), is essentially the same as that for an impurity in apaper extends to the case of a mixture as well, where a mole
normal fluid. In the latter case<<1 for a heavy impurity fraction x, of impurity particles exists instead of just one
particle and the relevant values ang (¢)~y*(0)=1. impurity particle. In that case a phenomenological descrip-
However, when the background fluid is cooling it is neces-tion similar to that of Sec. Il shows that the critical value of
sary thaty* (¢)~ &* so values ofp of order 1 are selected the control parametef* in the limit h—0 at finitexy/h is
when §*>1. The details of the mechanism by which the & =1—(xo/h)(1—a3)/4, so that the HCS of the mixture is
host fluid cools are unimportant for this qualitative effect. Inalways in an ordered statg=0) if xq/h=4/(1— ag)_ The
fact, even if all collisions were elastic, the same two phasegetails of this case will be published elsewhere.
would occur if the fluid were cooled by an external thermo-

stat. _ » ACKNOWLEDGMENTS
(2) The thermodynamic analogy originates from an
“equation of state” h=h(¢,&*), obtained from the This research was supported by National Science Founda-

“equilibration” condition for the HCS. The phenomenologi- tion Grant No. PHY 9722133. A.S. acknowledges partial
cal estimate in Sec. Il and the exact asymptotic kinetic theorpuPport from the Ministerio de Ciencia y TecnolagSpain
analysis of Sec. IV are essentially the same. The “Gibbs freéhrough Grant No. BFM2001-0718 and through a sabbatical
energy” obtained from integrating the equation of state has &rant No. PR2000-0117.

Landau-like form near the critical point with critical expo-

nents associated with the various first and second derivatives. APPENDIX A: COOLING RATES AND COLLISION

In particular, the susceptibility diverges, indicating a second FREQUENCY

order phase transition. . . . .

(3) The approach to the HCS is stable in both phases. The T_he coollng_ratef and & fo_r a fde_ ano_l the Impurity
dynamics is governed by a Ginzburg-Landau equation de_partlcle are defined by Eq2), while the diffusion coefficient
fined in terms of the Gibbs free energy. Near the phase trarll! S€C- Il is expressed in terms of a related frequeagy.
sition there is critical slowing, with the characteristic relax- | €Y can be written as
ation time diverging in proportion to the susceptibility. 5 5
Alternatively, this can be viewed as a change of time scale ,._ d(v*(1)) _ _5t<vo(t)>

] - y, Wp= T & + Vo,
from sto 7= \/hs. (v2(1)) ° (vh(D) 0T gt
(4) The diffusion coefficient is finite in the normal phase (A1)
but diverges on approaching the transition. It remains diver-

gent in the ordered phase. In terms of the velocity autocorwhere the impurity-fluid particle collision frequency is

051305-12



NONEQUILIBRIUM PHASE TRANSITION FOR A HEAVY ... PHYSICAL REVIEW E64 051305

Vo) Vo(t+t)

(Vo- T(1,0)vp)
- . SN TR
<Uo(t)>

(v5)

; ; ; ; ._1.In the following it is assumed that terms of relative ordeM 1/
The subscript O denotes the velocity for the impurity particle o o
and the angular brackets denote an average over the initigP" be neglected. Substitution of the definitions T¢e,1)

ensemble. The time derivatives can be expressed in terms 81“dT(1'0) leads to
the generatok for the inelastic hard sphere dynamj€s14],

(A13)

(A2) Vo=
/=0

i=— o2 D (V- &) (Vo 0)28(F y—
IX(O=LX(D), ay APt f 0O (= Va1 0)(Var 0)°3(1 1~ @)

~ 1 N
X (1+ a)(Gyy- o) — Z(l—az)(V21~ o),

N N N N
L=v0~VO+;vi~Vi+ZlT(i,O)+ >, > T(iL).
. - ) (Ad) (A14)

1 j#i
The binary collision operators for fluid-fluid and fluid-
impurity pairs are defined by

N| =

T(1,003= —Ez4hf dQO(—Vyg ) (Vig 0)28(r 10— )

()= 02 d0O(~v,-#)(v- 5501, @) (b~ 1), KNt Vo) (AL9

(A5) vo-T(l,O)voz—Ezzhf dQO(—Vyg &) (Vio )2
T(i.0>=—32f dQO(~Vig- 0) (Vi ) 3(rig— o) (bjo—1), X 8(F 19— 0)Vo- . (A16)
(A6)

Since these are all two-particle functions the averages in Egs.
where o= o0&, o=00, and b, andby, transform the rela- (A12) and (A13) can be reduced to integrals over the two-

. . . . . 2 . .
tive velocity for the pairs into their scattered velocities andParticle reduced distribution f“f‘Ct'omg) _andfg ) defined in
leave the center of mass invariant terms of theN-particle distribution functiorpg as

bijvij=Vvij— (1+a)(vj- o), b;G;=G;, (A7) f(z)(Xl,Xz)=V2f dxpdxs- - -dxyps(I'),  (AL7)

bioVio=Vio— (1+ o) (Vig @) &, biGio=Gio. (A8) .
_ . . F6(xg,%1) =V f dxp- - dxypdl).  (AL8)
The various velocities and reduced masses are given by
Here V is the volume andx; denotes a point in the six-

Vip=Vi— Vg, Gjo=puV;+ moVo, . . S
10— Vi Yo, =0T MY Koo dimensional phase space of particlé.e., x;={q; ,v;}. The

m (A9) frequencies then become
- m+m0’ 1 2 2 * *
§=Zno' (1—avs | dvidv; | dQ
Ao mim,’ X F* (vF VB 1= —0)O(VE o) (V3 0)°,
1 (A19)
Vij:Vi_le Gij=§(vi+vl-), (AlO) 1
§0=—4hn;2vf§f dvgdv’l‘fdﬂ
1
Vi=Gio+ 1oVio, Vo= Gio— 4Vio, Vj:Gij_EVij- Dk ok
X6 (Vg VT ,T10
(A11)

- ) * SNk D2 * *y\ .
In terms of the binary collision operators the cooling rates =~ 0)0 (Vi 0)(Vig 0) (Wi +Vg) - 0, (A20)

and collision frequencies become 1
=—2hng? :f dv*dv*fdﬂ
(N=1)(T(2,D03) +(T(1.00?) " Y

(%) 1 X FD* (VE VA 1= — 0)O(Vig &) (Vg 0)2VE -
(A12) 0 0:V1.l10=— O 100 0) V19" ) Vg - O
~ (T(1,005) (A21)
o=—N 2 ' . .
(vo) All velocities have been scaled relativeig= \(v?) and
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f@ =y Bp@% @)y 652 (A22) 4 |m ) 1+4¢
§=3 V3o vllmat), &=2u| 1-h—==),

The results at this point are still exact. It follows directly (A29)
from these results that and wp are manifestly positive.

. . 8 2m — — 1
1. Neglect of velocity correlations vo=3 ?hnazvfgo(le )2, (A30)

If velocity correlations in the reduced distribution func-
tions are neglected on the precollision hemisphé¢tésl6
they simplify to APPENDIX B: ASYMPTOTIC KINETIC EQUATIONS
The analysis here is based on the Enskog-Lorentz equa-
(V1.Vz 1= —0)=gf* (D) " (v3), tion to desgribe the distribution function forgthe impuri?y

o particle. Interest is restricted to the case of small ratios of

% (V& VE o= —0)=0gof 5 (vE)f*(v}), (A23) fluid particle mass to impurity particle mass. To obtain an
asymptotic form for the kinetic equation, first a Kramers-
where g and g, are the fluid-fluid and fluid-impurity pair Moyal expansion is performed to second order in the mass

correlation functions for particles at contact. The angular infatio. This accounts for the dependence of the collisional
tegrals can now be performed to give changes on the mass ratio. Subsequently, two different ex-

pansions are performed for the final asymptotic form de-
pending on the value of a control paramegér

(2)*

1
g: gn’]TO' Ufg(l az)fdVldvzf*(Ul)f*(U2)021,
(A24) 1. Kramers-Moyal expansion
The Kramers-Moyal expansion of the Enskog-Lorentz

8m(v*) — 1 equation has been obtained in Appendix A of R&f. The
bo=—3 hnUzvfgoz[@SZY*(véz»—h(”f(vgz)ﬂ' result is
(A25) p
difo(Vo,t)=—— [hVOJ’(Uo)fo(Vo t)]
4 . — 1
Vo:?@ Yhno?vgo=(v§*y* (v5?%),  (A26) 1 9 5
¢ 2 Goovg, h< n1(vo) 8i; + Na(vo)| voivo;
where the dimensionless functiong (vi?) and n¥(vi?) 1,
have been introduced for connection with the discussion in - §5ijvo) fo(Vo,t) | +O(h3). (B1)
Appendix B,
The friction y(vo) and noiseny(vo),ny(vy) are
7’*(11*2) —f dvi f*(vT)vg Vo VEq,
S g T TR Y(00)= 2E* (), Mi(vo)=2cv?nt ()
(A27) 0 2h ’ 1\vYo 3h fril ,
) (B2
HI(US fdvlf* Ul)U 3v
4 N2(vo) = gp, N3 (),

2. Maximum entropy ensemble where v, = ¢hnmo?gy(v) is the characteristic impurity col-

The HCS distributions are not known exactly, althoughlision frequency introduced in Eq3). Also y*(¢) and
approximate evaluations suggest they are close to Maxaj (¢) have been defined in E¢A27), and
wellians. Therefore, to obtain an estimate for the cooling
rates and collision frequency the maximum entrdmfor-

mation ensemble is assumed in this section. This is the n3(¢)=——— " fdvlf*(vl)v01 (Vg1 Vo)2— 1
Gaussian whose density, momentum, and kinetic energy are 16<U )b
constrained to have the same values as for the HCS, (B3)
3 |32 , 32 _ The dimensionless variables are
f*(v*):(z_) * /2, f ( 0) ( ) e—3v0 12¢
™ ¢ (A28) d=v?%, vE=volvs, VI=v;lvg,

(B4)
This gives the results Vor= "= Vi, vi=(0*(1)).
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The analysis of the deterministic limit in the text makes
use of the property* (¢)=y*(0)=1. To prove this, first

perform the angle integrations to get

* _ 1 *—1\_ é * £% * *
v (d)=1+ 5<U*>[¢<v ) ﬂ'qﬁfo dv*f*(v*)v
* x\4
xML(kL)>+
Vo/\™ Ve 5(v*)

X ¢(v*71>—4ﬂ¢f0€$dv*f*(v*)v* (B5)

where the inequality results from=4(4+x)(1—x)* for x
<1. Next, writing out the contribution frortw* ~1) explic-
itly gives the desired result

Amd
5(u*)

dv*f*(v*)v* =y*(0)=1.
(B6)

Y (p)=1+

Analogously, it is possible to prove that '(¢>)>O:

7 ()= (v* 1y — —f do* £* (0% )o*

5(v *>
* *2 %\ 3
orerst ) -]

{<v*—1>—4wf”$dv*f*(v*)v*
0

1
=
5(v*)
4
5<U*> Vo
=0. (B7)

dv*f*( *)U*
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. 5 Caeny 5 27
n;(¢)= 8¢2( 1+2¢+3¢%e 06552V 3

X(1—3¢+9¢2+9¢>)erf(\3¢/2). (B10)

In the following only solutions that depend on the magni-
tude ofv, are considered. Since the order parameter is the
average ofgp,

g(t):f dvoud *fo(vo.t), (B11)

it is appropriate to change variables frarg to ¢. In addi-
tion, the dimensionless time scale of E§) is introduced.
This is accomplished by defining the new distribution func-
tion P(¢,s) by

P(¢,s)=4mfo(vg, —27va¢l/2fo(v0,'[)

,dvg
Vids 4 (B12)

or

1
fo(vo,t)= 2WU3¢*1’2P<¢,s). (B13)
f

The Kramers-Moyal equatiofB1) becomes foP(¢,s)

29
dsP(p,8)=—— {cﬁ[ & +y*(d)]- (1—§£¢)h”’f(¢)

d¢p

4
tg @(ﬁzhﬂz((b)] P(¢,9+0(h).  (B14

The deterministic limith=0 is described in the text. In the
following an outline of the fluctuations about this determistic
limit is given.

2. Expansion around EOS

The remaining analysis of the text and below does not re- The effects of finiten represent “noise” which broadens

quire the explicit forms fory* (), ni(¢), and n3(¢).

the width of the initiald function as the system evolves. To

However, for the illustrations in the graphs an excellent apinclude such effects consider solutions of the form
proximation is obtained using the maximum entropy en-

semble(A28) for the fluid; no assumption is required regard-
ing the impurity particle distribution. The resulting integrals

can be performed, with the results

1 1 2
Y ()= 8¢(1+3¢)e 02— 16072 ?77

X (1—6¢p—9¢?)erf(\3¢/2), (B8)
n’f(¢)=%(5+3¢) 3“”2+i ;—Z

X (3+ 184+ 9¢?)erf(\3412), (B9)

an ¢Os,s,h) , (B15)
hp

P(d),s,h):hpp(

such that the limit limg_oP(#%,s,h)="P(%,s) is finite and
independent oh. The choice of reference stafg given by

Eqg. (51) implies initial conditions that do not deviate too
much from the stationary state. To find such solutions, define
a change of variables in EB14) by

b=dothPy, P(h,s,h)=h"PP(5,sh). (B16)

In the ordered phase a nontrivial equation ris ob-
tained with the choicep=1/2,
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. _2
Ndosy” (¢09+¢03{§n§(¢09

J
(957)( 7]15-0)_> %

P(n,s,0), &>1,

4__ . J
+ §¢05”z(¢03) o
(B17)

where it has been recognized thglt—y* (¢ =0 in this
phase. The average value pfobeys the equation

PHYSICAL REVIEW B4 051305

P(¢)= e (9= 909%1B(doh  (B2Y)

1
V2B(gohm

In the normal phas€03= 0 and the change of variables in
Eq. (B16) becomesp=hP#. A nontrivial equation forP is
obtained withp=1,

a 2 9
0737’(77,3,0)—>%[(1—§*)77—(1— 297 )

3dn
dsn(8)=— osy* (dod 0(S), (B18)
o ) ) o ) xn7(0)|P(n,s,0, &<1. (B22)
which is the linearized form of the determmlsnc dynamics
(50) for £ >1. Stability i§ assured by* (¢QS)>O, whiqh The average value of now obeys the equation
is seen to be thE case using EQ7). The stationary s_olut|on
to Eq. (B18) is »,=0 so there are no corrections iy in [ds+ (1= &%) n(s)=n*(0). (B23)
this limit. The stationary solution for the distribution func-
tion is obtained from The stationary solution to this equation is
2 - 4 — | d — = — nj(0)
2N (bod +2bod3 (bod |5 Ps= — dos¥* (b0 7P, he=——, (B24)
3 5 (97] 1_ g*
(B19)
whose solution is which gives the leading finite contribution tgs ash—0.
The stationary distribution function is
1 2 12
- = n2B(¢od 3/ 3 —
Py n) \/?8 09 Py 7])::( _77 ) e—37/2775' (B25)
(oo T s\ 2msT
(B20)
_ 1 2 — N — and the corresponding distribution in termsdbfis
B( oo =—7=—|3 N1 (Pod + o3 (s |,
v (oo L3 5 3 36 112 -
i Po)=—=| — g3/ (B26)
or, in terms of¢, hyns\ 2hngm
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